7 research outputs found

    A simple model for low variability in neural spike trains

    Full text link
    Neural noise sets a limit to information transmission in sensory systems. In several areas, the spiking response (to a repeated stimulus) has shown a higher degree of regularity than predicted by a Poisson process. However, a simple model to explain this low variability is still lacking. Here we introduce a new model, with a correction to Poisson statistics, which can accurately predict the regularity of neural spike trains in response to a repeated stimulus. The model has only two parameters, but can reproduce the observed variability in retinal recordings in various conditions. We show analytically why this approximation can work. In a model of the spike emitting process where a refractory period is assumed, we derive that our simple correction can well approximate the spike train statistics over a broad range of firing rates. Our model can be easily plugged to stimulus processing models, like Linear-nonlinear model or its generalizations, to replace the Poisson spike train hypothesis that is commonly assumed. It estimates the amount of information transmitted much more accurately than Poisson models in retinal recordings. Thanks to its simplicity this model has the potential to explain low variability in other areas

    Separating intrinsic interactions from extrinsic correlations in a network of sensory neurons

    Full text link
    Correlations in sensory neural networks have both extrinsic and intrinsic origins. Extrinsic or stimulus correlations arise from shared inputs to the network, and thus depend strongly on the stimulus ensemble. Intrinsic or noise correlations reflect biophysical mechanisms of interactions between neurons, which are expected to be robust to changes of the stimulus ensemble. Despite the importance of this distinction for understanding how sensory networks encode information collectively, no method exists to reliably separate intrinsic interactions from extrinsic correlations in neural activity data, limiting our ability to build predictive models of the network response. In this paper we introduce a general strategy to infer {population models of interacting neurons that collectively encode stimulus information}. The key to disentangling intrinsic from extrinsic correlations is to infer the {couplings between neurons} separately from the encoding model, and to combine the two using corrections calculated in a mean-field approximation. We demonstrate the effectiveness of this approach on retinal recordings. The same coupling network is inferred from responses to radically different stimulus ensembles, showing that these couplings indeed reflect stimulus-independent interactions between neurons. The inferred model predicts accurately the collective response of retinal ganglion cell populations as a function of the stimulus

    Nonlinear decoding of a complex movie from the mammalian retina

    Get PDF
    Retina is a paradigmatic system for studying sensory encoding: the transformation of light into spiking activity of ganglion cells. The inverse problem, where stimulus is reconstructed from spikes, has received less attention, especially for complex stimuli that should be reconstructed “pixel-by-pixel”. We recorded around a hundred neurons from a dense patch in a rat retina and decoded movies of multiple small randomly-moving discs. We constructed nonlinear (kernelized and neural network) decoders that improved significantly over linear results. An important contribution to this was the ability of nonlinear decoders to reliably separate between neural responses driven by locally fluctuating light signals, and responses at locally constant light driven by spontaneous-like activity. This improvement crucially depended on the precise, non-Poisson temporal structure of individual spike trains, which originated in the spike-history dependence of neural responses. We propose a general principle by which downstream circuitry could discriminate between spontaneous and stimulus-driven activity based solely on higher-order statistical structure in the incoming spike trains

    Multiplexed computations in retinal ganglion cells of a single type

    Get PDF
    In the early visual system, cells of the same type perform the same computation in different places of the visual field. How these cells code together a complex visual scene is unclear. A common assumption is that cells of a single-type extract a single-stimulus feature to form a feature map, but this has rarely been observed directly. Using large-scale recordings in the rat retina, we show that a homogeneous population of fast OFF ganglion cells simultaneously encodes two radically different features of a visual scene. Cells close to a moving object code quasilinearly for its position, while distant cells remain largely invariant to the object's position and, instead, respond nonlinearly to changes in the object's speed. We develop a quantitative model that accounts for this effect and identify a disinhibitory circuit that mediates it. Ganglion cells of a single type thus do not code for one, but two features simultaneously. This richer, flexible neural map might also be present in other sensory systems

    Nonlinear decoding of a complex movie from the mammalian retina

    Get PDF
    This package contains data for the publication "Nonlinear decoding of a complex movie from the mammalian retina" by Deny S. et al, PLOS Comput Biol (2018). The data consists of (i) 91 spike sorted, isolated rat retinal ganglion cells that pass stability and quality criteria, recorded on the multi-electrode array, in response to the presentation of the complex movie with many randomly moving dark discs. The responses are represented as 648000 x 91 binary matrix, where the first index indicates the timebin of duration 12.5 ms, and the second index the neural identity. The matrix entry is 0/1 if the neuron didn't/did spike in the particular time bin. (ii) README file and a graphical illustration of the structure of the experiment, specifying how the 648000 timebins are split into epochs where 1, 2, 4, or 10 discs were displayed, and which stimulus segments are exact repeats or unique ball trajectories. (iii) a 648000 x 400 matrix of luminance traces for each of the 20 x 20 positions ("sites") in the movie frame, with time that is locked to the recorded raster. The luminance traces are produced as described in the manuscript by filtering the raw disc movie with a small gaussian spatial kernel

    Hepatitis C in Laos: A 7-Year Retrospective Study on 1765 Patients

    No full text
    International audienceHepatitis C virus (HCV) is a global health concern, notably in Southeast Asia, and in Laos the presentation of the HCV-induced liver disease is poorly known. Our objective was thus to describe a comprehensive HCV infection pattern in order to guide national health policies. A study on a group of 1765 patients formerly diagnosed by rapid test in health centres was conducted at the Centre of Infectiology Lao Christophe Merieux in Vientiane. The demographic information of patients, their infection status (viral load: VL), liver function (aminotransferases) and treatments were analysed. Results showed that gender distribution of infected people was balanced; with median ages of 53.8 for men and 51.6 years for women (13-86 years). The majority of patients (72%) were confirmed positive (VL > 50 IU/mL) and 28% of them had high VL (> 6log10). About 23% of patients had level of aminotransferases indicative of liver damage (> 40 IU/mL); but less than 20% of patients received treatment. Patients rarely received a second sampling or medical imaging. The survey also showed that cycloferon, pegylated interferon and ribavirin were the drugs prescribed preferentially by the medical staff, without following any international recommendations schemes. In conclusion, we recommend that a population screening policy and better management of patients should be urgently implemented in the country, respecting official guidelines. However, the cost of biological analysis and treatment are significant barriers that must be removed. Public health resolutions should be immediately enforced in the perspective of meeting the WHO HCV elimination deadline by 2030
    corecore